

Valorization of peptide and lipid fractions of hemp (Cannabis Sativa L.) seed cake: combined action of pressing and enzymatic hydrolysis for the formulation of a liposomal vector

Maureen Gerlei¹, Cyril J.F. Kahn¹, Cédric Paris¹, Arnaud Bianchi², Emilie Velot², Michel Linder¹

¹Université de Lorraine, LIBio, F-54000 Nancy, France; ² Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France

Abstract

Recent reports from FAO show that between 1990 and 2000, France multiplied its production by 50, becoming the European and world leader in hemp seeds (Cannabis sativa L.) production (Xu et al., 2020). Currently in this country, the 2015 Energy Transition Act accentuates the priority of producing sustainably within a green economy. This law establishes the circular economy for limiting environmental impact and resource wastage, by exploiting and valorizing waste, now known as co-products. To date, the recovery of co-products (seeds, flowers and aggregates) from hemp cultivation remains limited. First, this study consists in optimizing the yield of hemp seed oil extraction with a screw press with the response surface methodology (temperature, nozzle diameter and frequency). The latter process generates hempseed cakes, in which fraction of lipids and proteins still remains. Thus, a study from a physicochemical point of view allowed us to characterize and quantify all products obtained from this process (hemp seed vs oil and cakes). Secondly, enzymatic hydrolysis of the hemp seed cakes yields residual peptide fractions devided into several molecular weight groups and a heavy phase. Lipid extraction experiments were studied to obtain and characterize polar lipids (phospholipids). This extraction will enable the formulation of lipid nanovectors which will encapsulate a peptide fraction (<10 kDa) and active biomolecules intrinsic (cannabinoids).

Materials & Methods		Ontimization of hemp seed oil		Dooblart da	oign for 2 y	vorioble	a and room		Enzymatic hydrolysis
Protocols	Phospoholipid profiles were obtained by latroscan MK5 and LC-MS/MS.	mechanical extraction by RSM	Expe-	Temperature (°C)	Frequency (Hz)	Nozzle (mm)	Oil mass (g)	Cake mass (g)	SUBSTRATE
<i>Physicochemical characterization</i> were carried out using the methods described by	<i>Cannabinoids profiles</i> were quantified by	Equation of quadratic model :	1 2 3	80 40 70	30 30 45	10 10 10	241.20 134.36 192.71	751.85 856.18 796.44	Water Control of pH
AOAC.	<i>Liposomes</i> were formulated according to the film hydration method (Bengham 1964)	$Y = \beta_0 + \sum_{i=j}^{\kappa} \beta_i X_i + \sum_{i=1}^{\kappa} \beta_{ii} X_i^2 + \sum_{i=1}^{\kappa-1} \sum_{j=2}^{\kappa} \beta_{ij} X_i X_j$ Where Y is the response, X _i and X _j are the parameters, and β are the regression coefficients	4 5 6	50 70 50	45 15 15 45	10 10 10 10	242.57 251.55 125.09	739.60 717.63 879.47	Control of degree hydrolysis (DH %)
chloroform/methanol 2:1 (v/v) and Soxhlet extraction with n-hexane (6h).	Liposome size: samples are diluted at 1/400th	Experimental domain and levels of	7 8 9	70 50 70	35 25 25	10 8 8	189.69 209.49 238.88	803.28 657.00 731.36	Stopping the reaction by heat treatment
Fatty acid profiles were determined by GC-FID. Fatty acids were esterified according to	dilution and analyzed by DLS.	distribution of variablesFactorsLevelsTemperature (°C)40 : 50 : 60 : 70 : 80	10 11 12	60 50 60	40 35 20	8 12 12	210.74 133.98 235.79	766.22 865.55 748.12	Oil phase Solid phase Hydrolyzate
the Ackman method (1998).	%, MTT activity and DNA amount in human mesenchymal cell.	Frequency (Hz) 15 ; 20 ; 25 ; 30 ; 35 ; 40 ; 45 Nozzle (mm) 8 ; 10 ; 12	13 14 15	60 60 60	30 30 30	10 10 10	219.05 222.64 220.75	762.80 739.80 764.18	– Ultrafiltration Freeze-drying
Results									

Physicochemical characterization

Physicochemical characterization of hemp seed and cake (g/100g)

Sample	Hemp seed		Hemp cake			
Poforonco	Results	Mattila <i>et al.,</i>	Poculto	Potin <i>et al.,</i>		
Reference		2018	Results	2019		
Protein	15.7 ± 0.7	25.6 ± 0.6	27.9 ± 1.3	30		
Fat	32.5 ± 1.5	34.6 ± 1.2	10.4 ± 0.2	8.7		
Fiber	30.3 ± 3.9	34.4 ± 1.5	56.4 ± 1.7	54		
Ash	8.2 ± 0.5	5.4 ± 0.3	7.3 ± 0.5	6.9		
Moisture	8.2 ± 0.1	6.7 ± 0.5	6.8 ± 0.1	5.3		

Hemp seed oil cannabinoid profile

Cannabinoid (mg/g oil)	
Cannabidiolic acid (CBDA)	0.003
Cannabidiol (CBD)	0.085
Cannabigerolic acid (CBGA)	0.630
Cannabigerol (CBG)	0.004
Tetrahydrocannabinolic acid (Δ 9-THCA)	0.000
Tetrahydrocannabinol (Δ9-THC)	0.000

Fatty acids profiles of lipid fraction of seed and cake (%)

Sample		Seed		Cake
Extraction	n-Hexane	Press	Ethanol	Chloroform/methanol
C12:0				0.19 ± 0.04
C13:0				0.15 ± 0.04
C14:0	0.04 ± 0.00		0.07 ± 0.01	0.23 ± 0.16
C15:0 ISO				0.15 ± 0.01
C15:0			0.04 ± 0.00	0.54 ± 0.02
C16:0	6.79 ± 0.01	6.67 ± 0.01	7.73 ± 0.08	16.18 ± 0.60
C18:0 ISO				0.17 ± 0.03
C18:0	2.91 ± 0.01	2.83 ± 0.00	3.02 ± 0.03	6.60 ± 1.33
C20:0	2.95 ± 0.01	2.90 ± 0.00	3.69 ± 0.05	1.46 ± 0.05
C22:0	0.36 ± 0.00	0.35 ± 0.00	0.67 ± 0.65	0.32 ± 0.04
C24:0	0.15 ± 0.00	0.14 ± 0.00		0.11 ± 0.02
∑ SFA	13.16	12.89	15.22	26.26
C13:1 n-4				0.16 ± 0.01
C14:1 n-5				0.05 ± 0.00
C16:1 n-7	0.12 ± 0.00	0.12 ± 0.00	0.13 ± 0.00	0.35 ± 0.02
C18:1 n-9	13.57 ± 0.03	14.34 ± 0.01	13.12 ± 0.26	1.70 ± 0.06
∑ MUFA	13.69	14.46	13.25	2.26
C16:2 n-4				0.17 ± 0.01
C16:2 n-6				0.75 ± 0.29
C16:3 n-3				4.74 ± 0.11
C18:2 n-6	55.08 ± 0.02	54.72 ± 0.01	54.40 ± 0.48	51.67 ± 2.50
C18:3 n-3	16.24 ± 0.03	16.15 ± 0.01	16.11 ± 0.25	13.60 ± 2.15
C18:3 n-6	0.88 ± 0.01	0.85 ± 0.00	0.85 ± 0.01	0.29 ± 0.02
C18:4 n-3				0.27 ± 0.00
C20:2 n-6				0.12 ± 0.00
∑ PUFA	72.20	71.72	71.36	71.61
Ratio n-6/n-3	3.44	3.44	3.22	2.84
PUFA/SFA	5.56	5.56	4.69	2.73

Optimization of yield of hemp oil by press extraction

Characterization of class of polar lipids in polar fraction

Characterization of polar lipids fraction

Conclusion

This study allowed:

- Optimization of hemps seed oil yield obtained by mechanical press.
- The oil and lipid fractions from hemp seeds and cakes are of interesting nutritional quality.
- Interesting characterization in terms of fatty acids and trace of bioactive molecules.
- Valorization of co-products.

- Liposomal-like carriers contain a pool of bioactive molecules:
 - Vectorization capabilities
 - Encapsulation of peptides and their bioactivities
- Presence of natural lipophilic biomolecules in low proportions → Value-added co-product
- Green solvent extraction study is in progress \rightarrow Development of future formulations in Cosmetics and Nutraceuticals

References

ACKMAN, Robert G. Remarks on official methods employing boron trifluoride in the preparation of methyl esters of the fatty acids of fish oils. Journal of the American Oil Chemists' Society, 1998, vol. 75, no 4, p. 541-545. FOLCH, Jordi, LEES, Mark, SLOANE STANLEY, Gerald H., et al. A simple method for the isolation and purification of total lipids from animal tissues. J biol Chem, 1957, vol. 226, no 1, p. 497-509. MATTILA, Mäkinen. "Nutritional Value of Commercial Protein-Rich Plant Products." Plant foods for human nutrition, 2018, Vol. 73 Issue 2, p108-115.

POTIN, François, LUBBERS, Samuel, HUSSON, Florence, et al. Hemp (Cannabis sativa L.) protein extraction conditions affect extraction yield and protein quality. Journal of food science, 2019, vol. 84, no 12, p. 3682-3690.