OILS-012 Lipid and volatile profiles of Finnish oat cultivars: Effect of storage on the volatile formation A. Puganen, A. Damerau, B. Yang, K.M. Linderborg Food Sciences, Department of Life Technologies, University of Turku, Finland

Introduction and Aim

Oats have the highest lipid content among grains. They have a high content of unsaturated fatty acids and lipid-degrading enzymes, which impact volatile profiles of oat. The formation of undesirable volatiles affects sensory quality.

Materials and Methods

- Twenty oat flours (n=20) of known pure cultivars from 2019 were studied
- Oat lipids were extracted from milled heat-treated oat flake flour (Jokinen et al. 2021) by four-stage lipid extraction: double extraction with MTBE-methanol (10:3, v/v), extraction with hexane, and extraction with methanol
- Extracted oat samples were fractionated into neutral and polar lipids by solid-phase chromatography

Therefore, the **aim of this study** was to investigate lipid profiles of different Finnish oat batches and study their relationship to formation of volatiles during storage.

- Unfractionated and fractionated lipid extracts were methylated by an acid-catalyzed
 - method and analyzed by gas chromatograph with a flame ionization detector
- Volatile compounds of oat flours were analyzed by solid-phase micro-extraction followed by gas chromatography-mass spectrometry method
- Oat flour samples were **stored** in paper bags at 22 °C for up to **nine months**

Results

Extractable oil amount of oat samples varied between **5.9-8.9 g per 100 g of flour** (DW). **Palmitic** (16%), **oleic** (36%), and **linoleic acid** (39%) were the most abundant fatty acids. **Neutral lipids** accounted for **78.7±2.5%**, and **polar lipids** for **21.3±2.5%** of lipid mass. Neutral lipids had more oleic acid, less linoleic acid, and

palmitic acid than polar lipids (Table 1).

Table 1: Content of main fatty acids (expressed aspercentage of total fatty acids)

Mean value of	C16:0, palmitic acid %	C18:1(n-9), oleic acid %	C18:2(n-6), linoleic acid %
unfract. lipid extract (n = 20)	15.8 ± 0.7	35.7 ± 2.6	39.0 ± 2.1
neutral fraction (n = 20)	15.2 ± 0.7	37.9 ± 2.3	38.0 ± 2.0
polar fraction (n = 20)	19.2 ± 0.7	20.6 ± 2.7	44.0 ± 1.9

The fresh samples had a low volatile content. The content and quality increased throughout the storage trial, indicating **lipid oxidation occurred (Figure 1)**. Main lipidderived volatiles detected from oat flour **Figure 1**. Principal component analysis (**PCA**) of **volatile lipid oxidation indicators** (n = 3). (**A**) PCA scores plot showing different oat cultivars during **storage trial** (violet \bullet = 0 months, blue \bullet = 6 months and pink \blacktriangle = 9 months). The samples numbers (15-34) are according to Jokinen et. al 2021. (**B**) PCA loading plot showing selected volatile variables. The arrow indicates the main direction of oxidation.

Conclusions

- Polar fraction contained higher quantities of palmitic and linoleic acid than the neutral fraction, while the neutral fraction had higher oleic acid
- Lipid-derived volatiles did not correlate to either oil amounts or linoleic acid content
- At **0 months**, there was **more variability in the volatile profile** between the oat batches representing different cultivars than at 6 and 9 months (**Figure 1**)
- During the storage, the sample became more equal and formed two groups according to time (6 and 9 months), except for a few exceptions (Figure 1)
 The level of volatile oxidation indicators in sample 32 was already high at 6 months of storage, also samples 27, 28, 30 and 34 showed high levels at 9 months of storage (Figure 1) and are considered to be the most oxidized

UNIVERSITY

OF TURKU

samples were 2-butanone, 2-heptanone, heptanal, 3-octen-2-one, nonanal, 2octenal, pentanal, hexanal, and octanal.

References

Jokinen, I., Pihlava, J-M., Puganen, A., Sontag-Strohm, T., Linderborg, K. M., Holopainen-Mantila, U., Hietaniemi, V., Nordlund, E. (2021). Quality factors of industrially produced oat flours in relation to the composition of the native grains. *Foods*, *10*, 1552

Acknowledgements

- Business Finland project (6933/31/2018) "Novel indicators and technologies for oat quality and applicability" (OatHow)
- Jenny and Antti Wihuri Foundation
- Raisio Research Foundation