

Quality and Oxidative Stability of Commercial Olive Oils for Pharmaceutical Use: A Statistical and Chemometric Evaluation

UFG

D. F. Silva¹, E. S. Almeida², S. Monteiro², N.S. de Oliveira², F.V. Almeida², A.C.B. Dias² ¹University of Goiás – UFG, Goiania, Brazil ²University of Brasilia – UnB, Brasilia, Brazil

Methodology

Results

Acidity Value

- T0: all samples with AV < 0.8 g of oleic acid · $100 \, \mathrm{g}^{-1} \, \mathrm{of} \, \mathrm{oil}$
- T1: 50% within the limit
- Increase associated with O_2 exposure \rightarrow oxidation + hydrolysis.

Peroxide Value and P-anisidine (Respectively, initial and final stages of lipid degradation)

- T0: Most samples with PV, 10 meq O_2 kg⁻¹ \Rightarrow good stability
- T1: PV decreased, oxidation progressed

EVOO

Antioxidant activity (%)

- p-AV increased samples in mostas hydroperoxides decomposed.
- Some samples showed reductions due to volatilization or reactions with other compounds
- Taken together, the results indicate that EVOOs largely entered the termination phase of lipid oxidation at T1.

EVOO p-anisidine 8 6 2 3 4 5 6 7 8 9 10 11 12 13 14 **EVOO**

Antioxidant Activity

- T0: eleven AA samples above 50%; with six exceeding 70%
- T1: seven AA samples above 50%; one above 70%
- degradation of phenolic compounds over time.

6 7 8 9 10 11 12 13 14

EVOO

Specific extinction 232 / 268 nm

- SE (SE_{232} and SE_{268} conjugated dienes and trienes)
- T0, all samples were within recommended limits $(SE_{232} \le 2.5; SE_{268} \le 0.22) \Rightarrow low oxidation levels$
- T1: six samples exceeded the SE232 limit, while the number of samples above the SE268 limit doubled, although the overall variation was moderate
- At T0, the oils were in an early stage of oxidation, with primary and secondary oxidative products accumulating over time, consistent with the trends observed in the PV and p-AV measurements.

Test	Main Results
ANOVA	• Significant differences for all parameters \Rightarrow F > 1.8993; p < 0.05
Tukey's Test	• T0: 50% significant differences ⇒ except SE268
	■ T1:AA, AV, SE232 significant in ⇒ more than 50% of sample
Paired t-test	• AA: 13/14 samples significant variation ⇒ loss of phenolic compounds
	- SE_{232} & SE_{268} : significant differences in most samples
	• p-AV & PV: indicate ongoing oxidative processes
	■ AV: less sensitive ⇒ 7/14 varied

PCA

PCA Analysis (PC1 vs. PC2 and PC1 vs. PC3)

Clear separation of samples according to oxidation state and antioxidant activity.

PC1 vs. PC2: samples in the upper-right quadrant -> higher primary and secondary oxidation values + elevated acidity.

PC1 vs. PC3: samples with higher PC3 values → stronger antioxidant activity → greater resistance to oxidation.

- clustering Three main patterns identified:
 - Low oxidative degradation + high antioxidant activity \rightarrow better quality.
 - Predominance of primary oxidation (PV, SE232, SE268).
 - Higher secondary oxidation (P-An) + acidity $(AV) \rightarrow advanced degradation.$

Conclusion

AA: sharp

SE: oxidative

changes

AV: Relative

PCA: oxidation + acidity = main discriminant factor

Acknowledgement

Quality decline

over time

Some EVOOs

are relatively

more stable than

others

