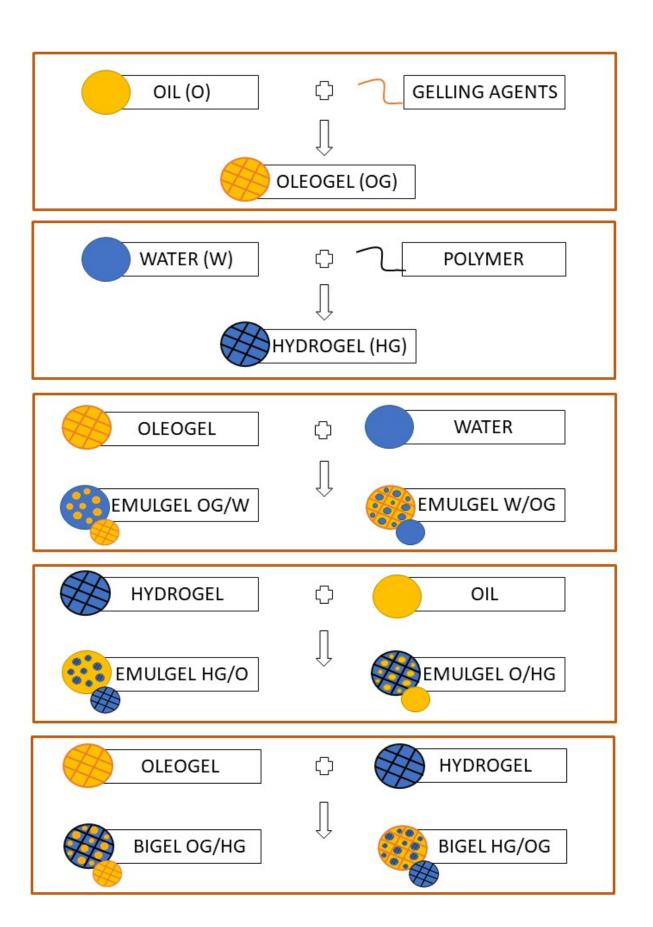
Euro Fed Lipid Congress and Expo 12 - 15 October 2025, Leipzig · Germany

Fat Substitution in Pastry Products: Techno-functional and Baking Optimization



Anda Elena Tanislav, Andreea Pușcaș, Cristian Szekely, Andruța Mureșan, Vlad Mureșan*, Elena Mudura University of Agricultural Sciences and Veterinary Medicine of Cluj Napoca, Romania, Food Engineering Department *Contact e-mail: vlad.muresan@usamvcluj.ro

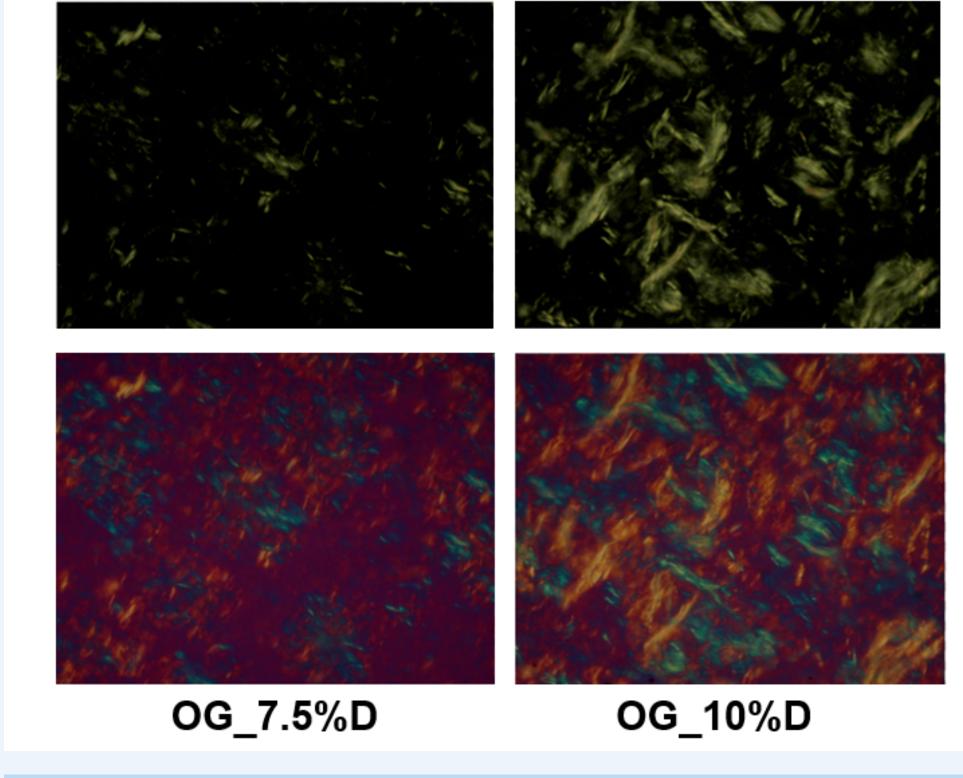
INTRODUCTION

!!! World Health Organization, Food and Drug Administration, Commission Regulation (EU) 2019/649

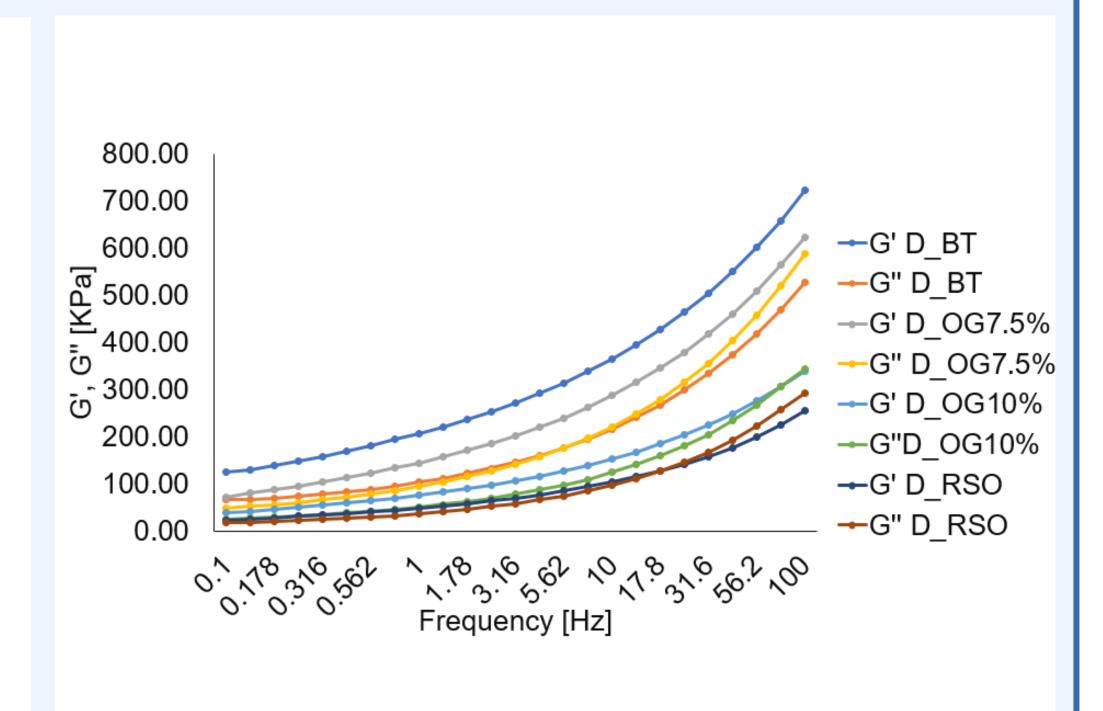
✓ Nutritional valuable
✓ Functional

MATERIALS & METHODS

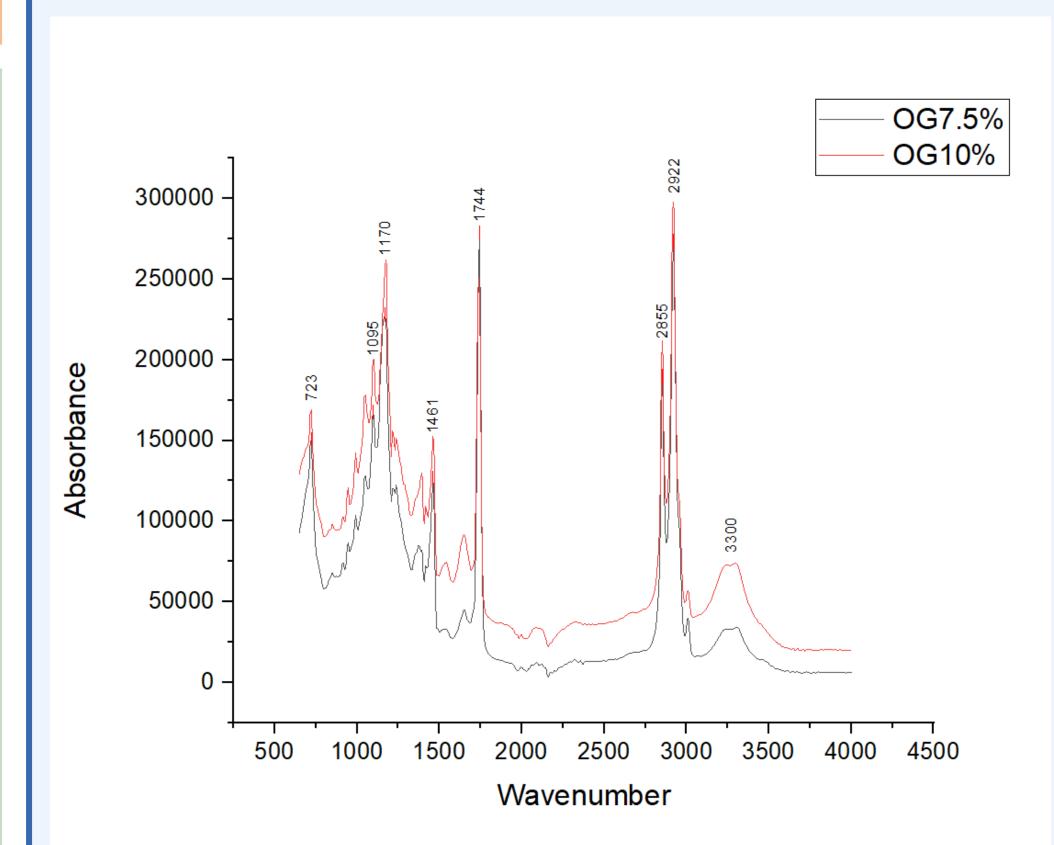
- Oleogel with 7.5% distilled monoglyceride- OG7.5%
 Oleogel with 10% distilled monoglyceride- OG10%
- ->Texture profile analysis, Rheological determination, Oil binding capacity, FTIR, Polarized light microscopy
- Dough with refined sunflower oil- D_RSO
- •Dough with oleogel from sunflower oil and 7.5% distilled monoglyceride- D_OG7.5%
- •Dough with oleogel from sunflower oil and 10% distilled monoglyceride- D_OG10%
- •Dough with butter (82% fat)- D_BT
- ->Texture profile analysis, Rheological determination, Water loss
- •Tart shells with refined sunflower oil- T_RSO
- •Tart shells with oleogel from sunflower oil and 7.5% distilled monoglyceride- T_OG7.5%
- •Tart shells with oleogel from sunflower oil and 10% distilled monoglyceride- T_OG10%
- •Tart shells with butter (82% fat)- T_BT
- ->Texture analysis
- •Protocol (Design expert software): baking time [minutes], baking temperature [°C], humidity [%]- 18 samples
- ->Response surface, ANOVA


Run	Factor 1 Baking time [minutes]	Factor 2 Baking temperature [°C]	Factor 3 Baking humidity [%]
1	145	15	0
2	145	15	10
3	150	10	0
4	150	10	10
5	150	18	0
6	150	18	10
7	165	8	0
8	165	8	10
9	165	15	0
10	165	15	10
11	165	20	0
12	165	20	10
13	180	10	0
14	180	10	10
15	180	18	0
16	180	18	10
17	185	15	0
18	185	15	10

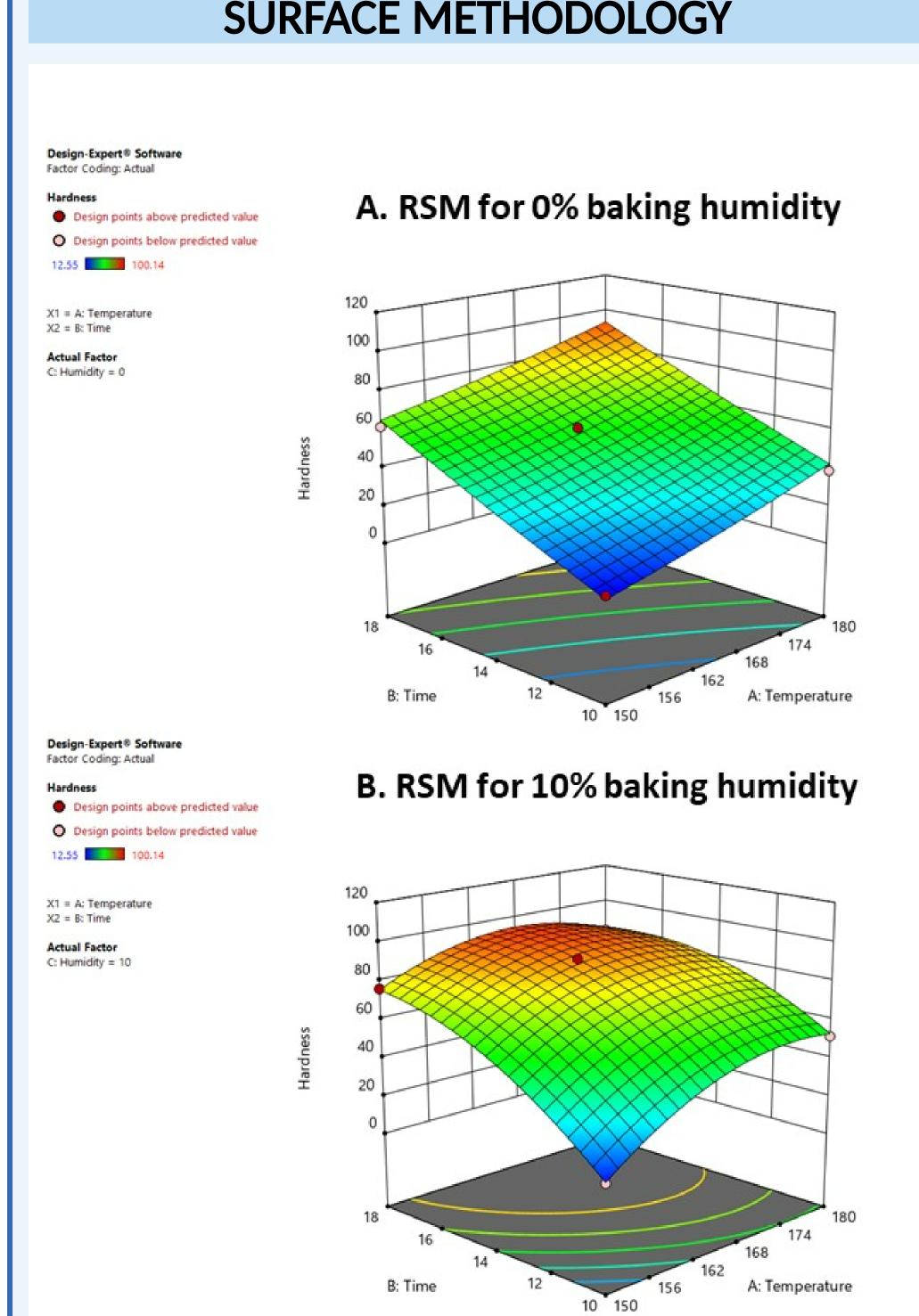
ACKNOWLEDGEMENT


This work was supported by a grant from the Romanian Ministry of Research, Innovation and Digitization CNCS/CCCDI—UEFISCDI, project number PN-IV-P2-2.1-TE-2023-1206 within PNCDI IV.

RESULTS


POLARIZED LIGHT MICROSCOPY OF OLEOGELS, 10x

RHEOLOGICAL BEHAVIOR OF DOUGH SAMPLES


OLEOGELS FTIR SPECTRA

TEXTURE PROFILE OF DOUGH SAMPLES

	D_RSO	D_OG7.5%	D_OG10%	D_BT		
Texture profile analysis						
Hardness [N]	33.16 ^B ±1.76	37.16 ^A ±1.34	32.33 ^B ±0.60	23.51 ^c ±1.78		
Adhesiveness [mJ]	7.53 ^B ±1.29	7.07 ^B ±1.07	8.83 ^B ±0.95	15.57 ^A ±3.55		
Resilience [-]	0.01 ^A ±0.00	0.01 ^A ±0.00	0.01 ^A ±0.00	0.02 ^A ±0.01		
Cohesiveness [-]	0.13 ^c ±0.01	0.12 ^c ±0.00	0.17 ^B ±0.01	0.23 ^A ±0.02		
Springess index [-]	0.12 ^B ±0.02	0.09 ^B ±0.01	0.13 ^B ±0.01	0.26 ^A ±0.02		

THE EFFECT OF FACTORS ON THE HARDNESS OF THE TART SHELLS TROUGH RESPONSE

TEXTURE PROFILE OF TART SHELLS

	T_RSO	T_OG7.5%	T_OG10%	T_BT		
Texture analysis						
Hardness[N]	33.02 ^c ±0.84	67.65 ^A ±1.80	55.85 ^B ±3.74	37.14 ^c ±0.34		

THE INFLUENCE OF FACTORS AND THEIR INTERACTIONS ON HARDNESS OF THE TART SHELLS- ANOVA

Model	Sum of Squares	p-value
	•	<u>"</u>
A-Temperature	2671.85	< 0.0001
B-Time	10503.10	< 0.0001
C-Humidity	2402.51	< 0.0001
AB	136.46	0.0397
AC	36.32	0.2615
BC	43.31	0.2221
A ²	491.47	0.0007
B ²	475.98	0.0008
ABC	92.83	0.0824
A ² C	709.76	0.0001
R ² C	650.83	0.0002

Final Equation in Terms of Actual Factors

- Hardness for 0% Baking humidity= -64.2333-0.7564*A+6.9115*B-0.0118*(A*B)+0.0058*(A)²+0.0588*(B)²
- Hardness for 10% Baking humidity= -2296.1442+23.5386*A+47.3265*B-0.1238*(A*B)-0.0636*(A)²-0.7535*(B)²

CONCLUSIONS

Oleogel with 7.5% distilled monoglyceride presented \(\psi\) hardness and significantly \(\psi\) adhesiveness compared to butter -> potential applicability in confectionery products, due to easy handling and processing.

Elastic behavior of the oleogels, with ↑ values of the elastic modulus -> reflects a well-organized three-dimensional network, giving the product increased structural stability and improved resistance to deformation.

Harder tart shells obtained with oleogels -> three-dimensional network formed by the oleogels that contributed to **improved mechanical cohesion**, essential for maintaining the **structural integrity** of the finished product

maintaining the **structural integrity** of the finished product.

The results indicate that **temperature**, **time**, **and humidity significantly influence** the hardness, with higher values obtained at increased temperature and time, particularly under higher humidity conditions.